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ABSTRACT 

Previous research has demonstrated competitive 
recognition results using a simulation of episodic 
memory - 'MINERVA2' - on the Peterson & Barney 
corpus of vowel formant data.  This paper presents 
a modified implementation designed to work on 
real speech data, and results are reported on 
isolated-word recognition experiments conducted 
using the TI-ALPHA corpus.  It is shown that 
access to fine phonetic detail is critical for 
achieving high recognition accuracy, whether it is 
provided by the episodic model or by hidden 
Markov models incorporating large numbers of 
Gaussian mixture components.  However it is 
confirmed that, although MINERVA2 offers a 
powerful means for generalizing by accessing the 
fine detail retained in all the training data, it is 
severely hampered by its inability to model 
temporal sequence.  It is concluded that a new 
episodic model is needed that is based on the 
principles of MINERVA2 but which overcomes 
such limitations. 

Keywords: episodic memory, exemplar-based 
ASR, MINERVA2.   

1. INTRODUCTION 

Automatic speech recognition (ASR) is a field of 
research that has matured over a period of more 
than half of a century.  In that time many different 
approaches have been investigated and 
contemporary large-vocabulary continuous-speech 
recognition (LVCSR) systems represent a 
considerable improvement over the first isolated-
word recognisers (IWR).  It can be argued that it 
has been the introduction of hidden Markov 
models (HMMs) in the 1980s that has been the 
main catalyst for these improvements.  However, 
HMMs are not without their shortcomings; many 
assumptions are made about the nature and 
structure of speech signals, and a number of these 
are patently false.  Nevertheless, the advantages of 

using probabilities and statistics to model our lack 
of knowledge [12] about the detailed structure and 
dependencies in speech, currently far outweigh the 
disadvantages arising from poor approximations to 
reality. 

However, it has become apparent that the 
performance of current state-of-the-art ASR 
systems is in danger of asymptoting to a level of 
recognition accuracy that falls significantly short 
of that which is required to support many advanced 
applications [14] let alone being comparable with 
the capabilities of a human listener [8].  As a 
consequence, a number of researchers are 
exploring the field of human speech recognition 
(HSR) in order to better understand the nature of 
speech, and to investigate the possibility that a 
simulation of the human speech recognition system 
might lead to more competitive and robust ASR 
[13]. 

In particular, there is growing interest in the 
possible implications of ‘episodic’ memory for 
perceptual tasks, and a number of HSR researchers 
are investigating an ‘exemplar based’ approach 
[1][2][3][4][6][9][16].  The main reason for this 
rise in interest is that the flexibility of HSR is not 
able to be modelled adequately with an 
architecture relying on pre-abstracted 
representations.  An exemplar-based approach 
offers a mechanism for retaining and accessing the 
‘fine phonetic detail’ [4] that would be discarded in 
purely abstract representations (such as HMMs). 

In a previous paper [10] the authors presented a 
vowel recognition system based on Hintzman’s 
computational multiple-trace (episodic) memory 
model known as ‘MINERVA2’ [5].  The episodic 
system performed very well in comparison to 
conventional pattern classifiers such as a support-
vector-machine (SVM), a Gaussian mixture model 
(GMM) and a k-nearest-neighbour classifier.  This 
study was conducted on the Peterson & Barney 
vowel formant data [15], but it was a relatively 
simple speech-related task since it involved no 
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temporal information.  This paper presents new 
results based on a comparison between a modified 
version of MINERVA2 and a standard HMM 
classifier using the TI-ALPHA isolated-word 
database [7].   

2. MINERVA2 

MINERVA2 simulates episodic memory by first 
storing ‘traces’ (records of individual memory 
experiences or episodes).  Inputs to the system - 
‘probes’ - are compared to all of the traces in 
memory, and the retrieved ‘echo’ (essentially a 
weighted composite of the stored traces) returns a 
vector containing additional knowledge that is 
unspecified in the input, e.g. its class.  The weights 
are determined by the similarity between the input 
and each stored trace.  Hintzman [5] showed that 
such a model is able to create abstract 
representations of stored data, and that by probing 
repetitively with the abstracted representations (a 
process referred to as ‘echoes of echoes’), it is 
possible to refine the response and exploit the 
implicit relationships between individual stored 
traces. 

The main parameters of the model are (i) the 
feature representations, (ii) the similarity function, 
(iii) the weighting function (also called the 
activation function) and (iv) the echo retrieval 
function. 

2.1. Model parameters 

2.1.1. Feature representations 

In the implementation discussed here, the feature 
vector consisted of the standard representation 
used in ASR tasks – mel frequency cepstral 
coefficients (MFCCs) and their derivatives.  The 
class labels (i.e. the identities of the lexical items) 
are stored as blocks of features in the same way as 
outlined in [10]. 

2.1.2. Similarity measure 

As in our previous work, the similarity between the 
input and stored traces has to be computed using 
an intermediate step that is different to Hintzman’s 
original binary approach.  In our implementation, 
the distance measure used is the Euclidean 
Distance (ED): 
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… where Ii is the ith feature of the input vector 
and ti is the ith feature of the trace t. 

The similarity between the input I and the trace 
t is then computed by: 
 ( )( ), , ,1 / maxI t I t I tsim ED ED= −  (2.2) 

… where EDI,t is the vector of length n, with n 
equal to the number of features, and max(EDI) is 
the maximum value in the vector.  It is necessary 
to normalize ED in order to ensure that the range 
of simI,t is between 0 and 1. 

Due to the non-binary nature of the features in 
this adapted version of MINERVA2, the similarity 
function is in fact calculated across the standard 
feature set only, and does not include the class 
label features.  This is necessary because, although 
the Euclidean Distance (ED) across the class label 
features is a static value containing no useful 
information for the comparison of a new input with 
the traces in memory, it does change the derived 
similarity values.  In particular, because of the 
normalisation of the similarity values, the bigger 
the constant value of the class label features that 
goes into the ED, the smaller the range that the 
derived values will occupy in the similarity range 
{0 - 1}.  In practice this means that this static value 
would counter the effect of the power factor 
(defined in section 2.1.3 below). 

2.1.3. Activation function 

To gain the final weighting w of the traces with 
respect to input I, the similarity measure is raised 
to the power of p.  As Hintzman noted [5], this in 
effect gives more weight to the most similar traces 
and less to those traces that are not similar.  
 

, ,
p

I t I tw sim=  (2.3) 

Hintzman sets the value of the power factor p to 
three.  He states, however, that other values are 
permissible as long as the sign of simI,t is retained.  
Thus in Hintzman’s MINERVA2, p is restricted to 
odd values.  However, this restriction is only 
necessary if negative similarity measures are 
possible.  Since the similarity measure in the 
adapted version is always positive, p is permitted 
to have any value, odd or even. 

2.1.4. Echo Intensity 

Echo intensity is a measure of how much 
activation has been triggered.  The more traces that 
match the input, and the more similar they are to 
the input, the greater the value of I.  Echo intensity 
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can be used to judge frequency and familiarity; it is 
defined as follows: 
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…where I is the input, T is the total number of 
traces stored. 

2.1.5. Echo retrieval 

The echo is the derived abstraction of the stored 
traces as a response to the input.  This is 
accomplished by computing a weighted sum of all 
traces in memory.  The echo then becomes:  
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… where wI,t is the weight on trace t for input I, 
and T corresponds to the number of stored traces.  
Note that in our adapted approach, a normalisation 
of this value is necessary for numeric reasons. 

2.2. Handling multiple frames 

MINERVA2 is essentially a single-frame classifier; 
hence moving from the Peterson & Barney vowel 
data to an isolated word corpus requires the 
addition of a mechanism for handling variable-
length tokens.  However, such a step constitutes a 
fundamental change in the underlying 
methodology.  Handling temporal sequence 
appropriately requires the derivation of an entirely 
new temporal episodic memory model, and this is 
the subject of ongoing research [11]. 

Prior to the development of a fully functional 
temporal episodic model, several intermediate 
solutions present themselves.  In this study, a ‘bag-
of-frames’ (BoF) approach was adopted as the 
configuration that involves the least number of 
assumptions about the temporal evolution of 
speech patterns.  BoF simply means that a word is 
classified according to the accumulated response of 
all of its constituent frames regardless of the order 
in which they occurred.  In the long term, this is 
unlikely to represent a realistic configuration; 
however in the short term, it allows whole-word 
recognition experiments to be conducted using the 
adapted version of MINERVA2. 
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… where bagsClass is the class that is 
attributed to the whole ‘bag of frames’ constituting 
an utterance, W is a class from the set of all classes 

C, n is the index of which frame of the utterance, 
and echoClassesVals are the values that the echo 
returns for all possible classes. 

3. EXPERIMENTS AND RESULTS 

The database chosen for this investigation was the 
TI-ALPHA isolated word corpus.  The data 
consists of 16 speakers (eight male and eight 
female) uttering the 26 letters of the US English 
orthographic alphabet (“A”, “B”, “C”, etc.).  The 
complete test set consists of 6628 utterances, and 
the complete training set consists of 4142 
utterances.  This standard ASR database was 
chosen because of (i) the high confusability of the 
vocabulary, hence its high sensitivity to alternative 
recognition approaches, and (ii) its relatively small 
size, hence allowing manageable recognition 
experiments.  Although primarily designed to be 
used for multi-speaker (MS) experiments, it was 
also possible to partition the data for speaker-
independent (SI) tests. 

All experiments were conducted using standard 
MFCC features and their first and second 
derivatives, giving rise to a total of 39 features per 
frame.  A 25ms frame was taken every 10ms.  The 
classes corresponded to whole-word labels. 

Results were also obtained using a standard 
whole-word HMM baseline that employed left-to-
right HMMs with three emitting states per model.  
A further HMM model was trained with only one 
emitting state in order to emulate the same 
‘temporally-invariant’ model as in the BoF 
scheme.  All HMM models were trained by 
incremental mixture splitting.  The number of 
components per mixture was optimized for best 
performance.  All references to the number of 
states in an HMM refer to emitting states only.   

3.1. MINERVA2 vs.  single-state HMMs 

In statistical pattern recognition, the process of 
generalization is achieved by combining 
information during training.  For example, in state-
of-the-art classifiers such as HMMs or GMMs, 
training data is used to find the mean and variance 
of a single- or multi-component Gaussian mixture 
distribution of the data.  In direct comparison, 
MINERVA2 does something very similar – it also 
computes the mean of similarity-weighted data; 
however, there is no overall mean as the similarity 
weighting attempts to substitute a general 
distribution for one that best fits the current input.  
Hence, MINERVA2 models the various classes to be 
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expressed using only one value per feature.  The 
consequence is that the use of such similarity-
weighted training data allows the constructed 
models to take into account the fine-phonetic 
similarity found within a frame.   

Therefore, the first hypothesis to be tested is as 
follows: does the use of similarity-weighted 
training data enhance the model’s recognition 
performance using the minimum number of model 
parameters?  If so, then one would expect that 
MINERVA2 would outperform a one-state single-
Gaussian HMM, if it makes sense to take the 
similarity of such fine details into account.  As can 
be seen from the results shown in Table 1, 
MINERVA2 clearly outperforms the single-state 
HMM.  (Note that error rate differences of more 
than 0.5% are statistically significant.) 

Table 1: Comparison between a single-Gaussian and 
MINERVA2 model.  Multi- Speaker (MS)  and Speaker-
Independent (SI) recognition results..   

Classifier Error Rate 
MS:HMM S1 (single-Gaussian) 35.4  % 
MS: Episodic Model (p=29) 11.3  % 
SI:HMM S1 (single-Gaussian) 40.0  % 
SI: Episodic Model (p=29) 27.5  % 

 

3.2. MINERVA2 vs.  multiple-state HMMs 

HMMs typically use GMMs (rather than single 
Gaussians) in order to allow data belonging to one 
class to be modelled using different distributions.  
In effect, the training data is split up and clustered 
during training to a previously defined number of 
Gaussian distributions.  This means that in the 
subsequent testing stage, partially clustered 
training data is compared to the unknown input.  
However, in direct contrast, MINERVA2 is based on 
the assumption that an online comparison of the 
input data to all of the training data leads to a more 
appropriate weighting of the information, and this 
may offer an advantage in recognition accuracy.   

However, the standard MINERVA2 architecture 
has an inbuilt disadvantage with respect to 
multiple-state models such as HMMs in that it can 
not flexibly model temporal information.  
Nevertheless, it is interesting to find out just how 
well/badly MINERVA2 would perform in 
comparison to HMMs using GMMs and/or 
multiple states. 

The first experiments were run on the complete 
test- and training data in multi-speaker mode, and 
the results are presented in Table 2.  As expected, 

the best recognition performance was obtained 
using the three-state-HMM with 120 Gaussians per 
state. 

Table 2: Multi-speaker recognition results.   
S1 (S3): HMM with one (three) emitting states. 

Classifier Error Rate 
HMM S3 (120 GMM)   3.9  % 
HMM S3 (60 GMM)   4.1  % 
HMM S3 (1 GMM) 29.0  % 
HMM S1 (300 GMM)   4.2  % 
HMM S1 (3 GMM) 49.4  % 
Episodic Model (p=29)  11.3  % 
Episodic Model (p=61)  10.6  % 

 
A speaker-independent training set was 

established for each test utterance by removing the 
respective test speaker’s utterances from the 
training data.  This meant that there was about 6% 
less training data for the speaker-independent tests 
in comparison with the multi-speaker condition.  
Table 3 presents the speaker-independent results. 

Table 3: Speaker-independent recognition results.   
S1 (S3): HMM with one (three) emitting states. 

Classifier Error Rate 
HMM S3 (30/60 GMM) 11.7  % 
HMM S3 (1 GMM) 33.4  % 
HMM S1 (60 GMM) 11.9  % 
HMM S1 (3 GMM) 52.6  % 
Episodic Model (p=29) 27.5  % 

 
As can be seen from the results listed in both 
Tables 2 and 3, the addition of GMMs to both one-
state and three-state HMMs gives rise to better 
performance than obtained using MINERVA2.  
Even the one-state HMM/GMM (which does not 
have the advantage of being able to model 
temporal information) was able to achieve better 
recognition results than the episodic model.  
However, it is noticeable that the number of 
Gaussians needed per state in the HMMs for 
optimal performance is rather high, (given that 
there are only about 160 utterances per class for 
training in the MS condition and about 150 
utterances in the SI condition).  This suggests that 
the individual Gaussians in the mixture are less 
generalized than the echo response of MINERVA2, 
and hence the decision is based on even less 
information than the echo acquired by MINERVA2. 

Another interesting observation is that the 
single-Gaussian three-state-HMM does not 
outperform MINERVA2, despite the HMM’s 
advantage in having some capacity to model 
temporal information.  In fact, in the multi-speaker 
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condition (Table 2), the recognition performance 
obtained using three-state HMMs is only slightly 
better than that obtained using one-state-HMMs 
(3.9% vs.  4.2%).   

In order to assess whether this indicates limited 
use of temporal information, it is necessary to 
compare single-Gaussian three-state HMMs with 
one-state HMMs which have an equal total number 
of Gaussians (i.e. three-state HMMs with a one-
component GMM vs.  one-state HMMs with three-
component GMMs).  The results in Tables 2 and 3 
indicate that the one-state HMMs lead to 
significantly worse recognition results, hence 
confirming (as one would expect) that temporal 
information is indeed a key feature for accurate  
speech recognition. 

On the other hand, a further comparison of the 
slight differences in recognition performance 
between the one- and three-state HMMs with a 
high number of Gaussians per state (i.e. S1-
300GMM vs.  S3-120GMM in Table 2) suggests 
that the modelling of fine spectral detail in the 
speech signal carries more significance for good 
classification than some limited ability to model 
the temporal evolution of the patterns.   

3.3. MINERVA2’s sensitivity to training data 

Additional experiments were conducted to 
investigate the dependency of MINERVA2 on the 
type and amount of training material.  The test and 
training data used for these experiments were 
relatively small subsets of the complete test and 
training set, however they were selected to cover 
the complete set of classes (i.e. the whole 
alphabet).  The following experiments were 
conducted:  

 
• Experiment A (multiple-speaker) 

Train: 208 utterances, two speakers (M1, F8) 
Test: 194 utterances, all 16 speakers 

• Experiment B (multiple-speaker) 
Train: 208 utterances, four speakers (M7 - F2) 
Test: 194 utterances, all 16 speakers 

• Experiment C (multiple-speaker) 
Train: 416 utterances, four speakers (M7 - F2) 
Test: 194 utterances, all 16 speakers 

• Experiment D (speaker-independent) 
Train: 416 utterances, four speakers (M7 - F2) 
Test: ~194 utterances, all 16 speakers 

 
Table 4 illustrates the results for these different 

experimental configurations (p=11): 

Table 4:  Results of experiments A-D 

Classifier Error Rate 
A 42.3  % 
B 48.0  % 
C 29.9  % 
D 45.8  % 

 
These results seem to indicate that the number of 
training utterances may be more important than the 
number of training speakers that are in the system; 
the performance improved considerably by adding 
more training tokens, but it stayed approximately 
the same when tokens were replaced using 
examples from another speaker.   

3.4. Parameter dependency 

A further observation was that the HMM and 
MINERVA2 models behaved with different 
sensitivity to changes in the values of the free 
parameters (i.e. the number of Gaussians per state 
for the HMMs, and the value of p for MINERVA2).  
The results of experiments varying these 
parameters are shown in Figure 1. 
 

Figure 1: Word error rates (WER %) for multiple-
speaker (MS) and speaker-independent (SI) HMM and 
MINERVA2 conditions as a function of power 
value/GMM components. 
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The results presented in Figure 1 suggest that 
MINERVA2 is less dependent on its parameter 
settings than the HMMs.  Further, although not yet 
tested, there is reason to believe that it should be 
possible to automate the setting of the free 
variables in MINERVA2 by relating them to the size 
of the frames per class and number of total classes.  
In contrast, even after extensive research into 
HMM-based ASR, finding the correct topology for 
the models is still a matter of hand tuning on an 
evaluation set. 
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4. DISCUSSION 

The results presented in this paper provide support 
for two main conclusions.  First, the comparison 
between MINERVA2 and single-Gaussian 
classifiers indicates that access to fine-phonetic 
information can indeed improve the performance 
of automatic speech recognition.  This is supported 
by the fact that a high number of Gaussian mixture 
components have the best recognition results.  
Second, the results have shown that the MINERVA2 
model is not able to perform as well as state-of-
the-art HMM classifiers on the TI-ALPHA data, 
primarily due to its lack of temporal structure.   

Therefore, the overall conclusion would seem 
to be that HMMs are not only able to retain fine-
phonetic information, but they seem to be able to 
use it better than the current MINERVA2 model.  
However, MINERVA2 still holds a big advantage 
over the HMM models – it retains all the 
information present in the training data.  An HMM, 
even when using high numbers of Gaussians per 
mixture, will always have to sacrifice some of the 
fine detail in frequency (by using fewer Gaussians 
than examples) and in time (by using fewer states 
than frames) in order to be able to generalize.  
Once lost, this information is lost forever in an 
HMM.   

There are two very obvious shortcomings in 
MINERVA2 which probably cause the current 
implementation to be inferior to HMMs.  The first 
is the combination of unweighted Euclidean 
Distance with MFCC features in the modified 
MINERVA2 model.  In a GMM, each feature in a 
feature vector is modelled independently in a 
separate dimension, and hence, if the variances of 
some of the features are very different to others, 
there is no direct impact on the other dimensions; 
differences are automatically scaled by the 
variances.  However, the unweighted Euclidean 
Distance in the modified version of MINERVA2 
does not compensate if some of the features have a 
larger range of values than others.  For example, if 
the range of values for one MFCC feature is ten 
times larger than another, then it would carry more 
importance for the computation of the similarity 
between trace and probe.  Thus, either different (or 
normalised) features have to be used, or the model 
has to be able to account for such differences to 
ensure that all features are given equal weight.  
Some initial experiments with normalized features 
seem to confirm this weakness. 

Of course the main disadvantage of MINERVA2 
compared with HMMs is that while the HMM has 
the ability to model temporal sequence, MINERVA2 
cannot.  This arises from the fact that the system 
echo is not attributable to any particular trace, but 
is rather a collected response from all traces in 
memory independent of the sequence that they 
occurred in.  Two solutions present themselves: 
 

1. The sequence of frames should be encoded 
into the traces by using a multi-frame context 
window. 

2. The sequence should be superimposed on the 
front-end features in a manner that is similar 
(but more explicit) to the derivatives used 
with MFCC features. 

 
The first option was tried on the same data as in 

experiment B.  By increasing the context from one 
to 20 frames, a steady gain in performance was 
achieved, and for a 20-frame context the error rate 
decreased by 5.7% to 42.3%.   

However, neither of these solutions treats 
sequence as an elementary property of the 
recognition process.  Hardwiring context 
information into the features means that the 
temporal dimension of the model is fixed and the 
model would only compare corresponding features 
with each other.  For example, this would mean 
that speaking rate or other aspects of temporal 
dynamics would be fixed in the trace and could 
rule out traces that are very similar but have 
different timing structures.  Instead, an adequate 
model for speech recognition should be able to use 
the information of sequence directly, and thus 
allow for dynamics in all dimensions.  
Disregarding sequence means that key information 
available in each episode is not exploited by the 
MINERVA2 model as it stands.   

5. CONCLUSION 

This paper reports new results for an adapted 
computational multiple-trace memory model 
known as MINERVA2 on an isolated word 
recognition task.  Unlike the previously reported 
results (which were on parameterised vowel data), 
the experiments reported here used real speech 
data encoded using standard MFCC features (and 
their time derivatives).  In order to introduce the 
least number of assumptions about the temporal 
evolution of speech patterns, a ‘bag-of-frames’ 
approach was introduced to handle multiple-frame 
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utterances.  The recognition results have been 
compared with standard HMM classifiers. 

Unlike the previously reported results on the 
Peterson and Barney database, MINERVA2 shows a 
clear lack of performance on isolated words 
compared with that obtained using HMMs, and 
there are reasons to believe that this could result 
from the combination of MFCC features with the 
Euclidean Distance used in MINERVA2.  However, 
the main shortcoming of the model is its inability 
to incorporate sequence information.  This 
weakness can be overcome to some extent if 
sequence is encoded as part of the features 
supplied to the system.  Unfortunately this 
approach means that there is no flexibility for 
comparing temporal information between probe 
and trace by the system, which is a definite 
weakness of MINERVA2.  Further development of 
the MINERVA2 model is needed in order to 
overcome such constraints while at the same time 
maintaining its positive features and preserving its 
appealing simplicity.   

Nevertheless, the value of using fine-phonetic 
information seems to have been confirmed by the 
experiment reported here.  HMMs are obliged to 
average over such information in order to 
generalize, and the fine detail is inadvertently lost 
in the process.  On the other hand, an episodic 
model such as MINERVA2 is not only able to 
generalize by using all the training data (in contrast 
to HMMs which typically use the data from one 
class at a time), but it does so in a way that exploits 
the detail by retaining the original data.   

In conclusion, despite the relative simplicity of 
the experiments reported here, the results confirm 
that the retention of fine phonetic detail is 
important to accurate speech recognition, and that 
episodic modelling offers a compelling alternative 
to HMMs as a means for exploiting such detail.  
However, it is also clear that MINERVA2 is 
severely limited in its ability to exploit temporal 
sequence information.  Hence a new episodic 
model is required that is based on the principles of 
MINERVA2 but which overcomes such limitations.  
Such a model is currently the subject of ongoing 
research [11] and early results suggest that this 
new ‘temporal episodic memory model’ (TEMM) 
is capable of outperforming HMMs on a speech 
recognition task. 
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